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Abstract 

Capturing vast amounts of digital chromatographic data is now routine, but it brings with it the onerous problems 
Of data reduction. unification and analysis. The methods reported here provide a rapid means of storing, sorting, 

tabulating and analyzing large sets of chromatographic data. 

I. Introduction 

Static headspace gas chromatography (GC) is 
a sensitive method for analyzing the volatile and 

semivolatile hydrocarbons [l-4]. The method 
lends itself to automation. potentially allowing 

for the acquisition of large data sets with mini- 
mal labor. While headspace GC is a potent 
analytical tool, it has not been used extensively 

in large population studies. The correlation of 
retention time data across multiple samples is a 
significant problem that limits the ease whereby 

large data sets are accumulated and analyzed. 
Variability in retention time data among samples 
stems from human error in the manipulation of 

the samples as well as system related errors. 
Manual input of chromatographic data for 
statistical analysis is also a source of error. The 

automated static headspace sampling system and 
digital data storage system described in Byrd and 
Freeman [5] minimize both of these errors. 

Here, we illustrate the assembly and analysis 
of large chromatographic data sets using the 
volatile and semivolatile terpene compounds 
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produced by two subspecies of big sagebrush 
(Artemisia tridentata ssp. tridentata, i.e. basin big 

sagebrush, and A. tridentata ssp. waseyana, i.e. 
mountain big sagebrush) and various hybrids 

between these two taxa [6]. Like most chromato- 
graphic studies we are interested in comparing 
mean concentrations of one or more compounds 

among various treatments, but in addition we are 
also interested in comparing the ability of these 
sagebrush taxa to regulate the production of 

volatile compounds among leaves of the same 
plant. The process of hybridization disrupts long 
established intergene coordination (co-adapted 
genes complexes), and thus the ability of a plant 
to regulate its body. We have investigated this 
disruption by comparing within plant similarity 

indices among plant populations. 
The majority of volatile and semivolatile com- 

pounds produced by sagebrush are monoter- 
penes [7-141, i.e. stable volatile or semivolatile 
non-saponifiable lipids, linked to essential meta- 
bolic processes. We also examined the distribu- 
tions and concentrations of sesquiterpenes, 
coumarins and auxins that, like terpenes, are 
derived from isoprene [ll]. Terpenes and related 
compounds are believed to function as pollinator 

reserved 
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attractants, pesticides, phytotoxins, bacterios- 
tats, predator defense compounds or insect larval 
abortives [7,8,10]. Several studies suggest that 
monoterpenes are taxa specific [6,8,10.12-15). 

2. Methods 

We examined a narrow hybrid zone in Salt 
Creek Canyon, UT, USA. There, basin big 
sagebrush occurs below 1740 m, while mountain 

big sagebrush occurs above 1860 m, with the 
hybrid zone found in between. Plants were 
collected from five sites, one from each of the 
two parental regions, and one from each of the 
three hybrid zones [6]. Twelve plants were 
sampled from each of the parental sites and from 
four plants in each of the hybrid sites. The plants 
were permanently marked and the same indi- 
viduals were sampled in both the Spring and Fall 
(1991). For each season we collected two leaves 
per branch from two branches per plant. We also 
sampled two leaves from one flowering stalk 

(inflorescence) per branch in the Fall. The data 
set was derived from more than 400 samples. 
Since the concentrations of more than 100 com- 
pounds were determined using the protocols in 

Byrd and Freeman [5], the entire data set ex- 
ceeded 40 000 data points. Manipulation of these 

data provided additional information (total hy- 
drocarbons, percent area of a given component, 
mass of all components, mass of individual 
components and percent of area or mass of a 
component) and expanded the total data set to 
over 200 000 data points. 

We used PeakSimple I software [16] to capture 
the chromatographic analog signals and con- 

verted them to an ASCII digital format. The 

digital storage consisted of a voltage file and a 
summary report file that included retention time, 
percent area, peak height, peak area and inter- 
nal standard information. These summary files 
were imported directly to a spreadsheet (Lotus 
2.1 [17]). Th ese data were transposed for statisti- 
cal procedures so that each sample represented a 
row of the matrix rather than a column, with 
retention time windows shown in columns. This 
step was repeated for each sample. Further 

reduction of data was made on this data set by 
selecting specific time windows from the data set. 

3. Statistical analyses 

Below, we use a subset of our data to illustrate 
several parametric and non-parametric statistical 
procedures that may be used to analyze chro- 
matographic data, comment on the limitations of 
various tests and report results for the whole 
data set (for details see [18-251. Parametric tests 
utilize the variance in testing for differences 
among the means of treatments. Two assump- 

tions must be met: (1) the data must be normally 
distributed and (2) the variances must be the 
same for each treatment. If both these assump- 
tions are valid, then these statistically powerful 
parametric procedures can be utilized. If these 
assumptions are not met and the data cannot be 
transformed so that the assumptions hold, then 
one should use the less powerful non-parametric 

procedures. 

3.1. Comparing means among treatments 

Parc2metric procedures 
To illustrate the use of parametric procedures, 

we have compared the concentration of a com- 
pound with a retention time of 7.92 min among 
the sagebrush taxa using a simple oneway analy- 
sis of variance (Table 1) and a multiple range 
test (Table 2). The former test determines if 
there is a significant difference among the 
means, but does not determine which means are 
different from one another. A oneway analysis 
of variance (also known as a fixed effect or 
Model 1 analysis of variance) using all the data 
for peak 7.92 showed that the concentration 
differed significantly among the sites (F,,iZ5 = 
13.86, P<O.OOOl). The a posteriori Student- 
Newman-Keuls multiple range test does deter- 
mine which means differ significantly from each 
other. The Student-Newman-Keuls multiple 

range test (Table 2) showed that the concen- 
trations at site 1 (x= 0.238 * 0.2053) differed 

significantly from the concentrations at all other 
sites. However, sites 2, 3, 4 and 5 did not differ 
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Table 1 

Data from one leaf per plant for four plants from each of the five sites used to illustrate the procedures of a oneway analysis of 
variance 

Terpene concentration from sagebrush plants growing at five different sites, data are from the Fall of 1991 
Site 1.000 2.tKKI 3.ooo 4.000 5.ooo 

Data 0.764 0.021 0.114 0.000 0.138 

0.790 0.032 0.148 0.000 0.119 

0.812 0.030 0.130 0.000 0.113 

0.692 0.029 0.127 0.090 0.112 

Oneway analysis of variance 
Total Site 1 Site 2 Site 3 Site 4 Site 5 

Mean _% 

Sum 

(cx)“fN 

C(x’>i~ 

Total 2, c, x,,, 
Total sum 

of squares 

Z,C,X’-C 

C[(~,~,x,,,,‘l~N 

0.764 0.028 0.130 0.023 0.120 

3.058 0.112 0.519 0.090 0.482 

2.338 0.003 0.067 0.002 0.058 

0.586 0.001 0.017 0.002 0.015 

4.261 
2.346 0.003 0.068 0.008 0.058 

0.908 

Total sum of squares = T = ~,~,,yf,, - C 1.576 

Group sum of squares = G = C,[(x ,x,,,)~]/N, - c 1.560 

Error sum of squares = E = T - G o.tl15 

Error MS = EiDF = 0.015/ 15 = 0.001 

Group MS = GiDF = 1.560/4 = 0.390 

F = group MS/error MS = 390.000 

The F value is compared against tabulated using the degrees of freedom among groups (one less than the number of groups) and 

the error degrees of freedom. In this case there are 20 data points. One degree of freedom is assigned to the mean, four to the 

groups and so there are 15 degrees of freedom for error. 

significantly from one another. The means for 

these sites were 0.0472 -+ 0.0535, 0.0266 * 
0.0531, 0.0106 f 0.0299 and 0.0794 ? 0.1266, re- 
spectively. Despite the appealing result from the 

oneway analysis of variance its use is not appro- 
priate for this data set. These chromatographic 
data have unequal variances among sites (as 

determined by Bartlett’s test F = 20.622; see 
Table 3), and the data are not normally distribut- 
ed (as determined by the Kolmogorov-Smirnov 

goodness of fit test; see [ 181). Therefore one 
should not use the parametric procedure but 

should instead use a non-parametric Kruskal- 

Wallis procedure (Table 4). 

Non-parametric procedures 
The non-parametric Kruskal-Wallis test does 

not have the stringent assumptions of normality 
or homogeneity of variance. We have illustrated 

its use in Table 4 where we compare multiple 
means among treatments. Again, the results 
show a significant difference among the sites 

when all the data for the compound corre- 
sponding to peak 7.92 were used (x2 = 41.90). 
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Table 2 
Student-Newman-Keuls multiple range test 

SE = j/(S*i2)(lln, - l/n,); q = (x, - X,)/SE; S2 is the error mean square from Table 1 

Comparison Difference SE 4 Critical Conclusion 
.E& - xa value 

of 4 

1 vs. 3 0.634 0.0158 40.126 4.367 P =c 0.05 
I vs. 5 0.644 0.0158 40.759 4.347 P c 0.05 
1 vs. 2 0.736 0.0158 46.582 4,367 P c 0.05 
1 vs. 4 0.741 0.0158 46.898 4.367 PCO.05 
3 vs. 5 0.010 0.0158 0.633 4.367 P20.05 
3 vs. 2 0.102 0.0158 6.456 4.367 P =L 0.05 
3 vs. 4 0.107 0.0158 6.772 4.367 P<O.O5 
5 vs. 2 0.092 0.015% 5.822 4.367 P 4 0.05 
5 vs. 4 0.097 0.0158 6.139 4.367 P < 0.05 
2vs. 4 0.005 0.0158 0.316 4.367 P > 0.05 

This test is used after an analysis of variance to determine which means differ from one another. See Table 1 for the analysis of 
variance. In performing this procedure the means must be ranked first. Critical values of q are obtained from the statistical tables. 

~ul~~~~r~~~~ ~ruce~ures 

If the samples being analyzed contain more 
than one compound of interest, then the con- 
centration of compound A in each sample is not 
independent of the concentration of compound 

B, and one must use a multivariate analysis of 
variance (MANOVA) as the parametric proce- 
dure. The MANOVA test carries with it all the 
assumptions of analysis of variance and the same 
tests are used to determine if the assumptions 

Table 3 
Bartlett’s test, used to determine if the variances are homogenous among the various treatment groups 

Sites 1.000 2.000 3.000 4.OGO 5.000 

Data 0.764 0.021 0.114 
0.790 0.032 0.148 
(1.812 0.030 0.130 
0.692 0.029 0. 127 
0.764 0.028 0.130 
0.0082 0.000 O.OOO6 

The degree of freedom. i.e.. n, - 1 
3.000 3.000 3.000 
0.0027 0.0000 0.00012 

-2.5686 -4.6320 -3.6990 
-7.7059 -13.8961 -11.0969 

0.000 

o.oou 
0.000 

0.090 
0.023 
0.0061 

3.000 
0.002 

-2.6990 
-8.0969 
-3.1144 

0.138 
0.119 
0.113 
0.112 
0.120 
0.0004 

3.000 
O.OOOl 

-4.0000 
- 12.ooou 

Data are the same as used in Table 1. 8, is compared to a ,y’ distribution. In this case the variances are not homogenous and one 
should use a non-parametric test as illustrated in Table 4. 
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Table 4 
The Kruskal-Wallis test, a non-parametric procedure for comparing three or more means; it uses ranked data 

229 

Sites 1 .oOO 2.oOO 3.00 4.000 5.000 

Ranks fRi) 18*0(x7 4.ooo ll.ooo 2.000 lS.QOo 
19.00@ 7.OfX1 16.ooo 2.000 12.0OO 
20.00 6.0(30 14.ooo 2.000 lO.OOO 
17.ooo S.OOo 13.ooo 8.0@0 9.000 

n 4.000 4,000 4.0(X1 4.000 4.oQO 

Crank (R, ) 74.00(1 22.000 54.0 14.000 46.000 

Rf7n; 1369.OOO 12l.OOt) 729.GuO 49.oOQ 529.000 

CT= co,” - 1,) (3’- 31 I~ refers to the number of ties. In this case three 

ii J ~ 

numbers were tied 
C=l- z: T i(N? - N) 0.9970 

H = lZI[N{M + I)] ’ 16.914 
C,R%, - 3(N + I) 

H,=NiC 16.9650 P < 0.005 

The analysis is performed on the ranks and not the data itself. The data are given in Table 1. The distribution of II, is 
approximated by that of a y’ with one degree of freedom less than the number of groups being compared. 

are met. Some authors mistakenly use multiple 

‘.t” test (or other tests such as correlations -x2, 
etc.) for such comparisons, but this causes a 
build up of type 1 errors, i.e. the probability of 

rejecting a true hypothesis. The null hypothesis 
in most cases is that there is no difference among 
the treatments. So the use of multiple tests leads 
to the reporting of significant differences where 
none may exist. If one chooses to use multiple 
“t” tests one can correct for the build up of type 

1 error by using the sequential Bonferroni test 
(see [ 191). 

To distinguish sources of variation in the data 
set, we recommend principal component analy- 
sis. The method can be used to obtain a visual 
display of multivariate data. Principal compo- 

nent analysis requires the determination of new 
axes in the multivariate space formed by the 

originat variables. These new axes are usually 
generated using least squares regression tech- 
niques [X),23,26.27]. The first component (new 
axis) is that line which accounts for the greatest 
variation. The second axis is that line which is 
perpendicular to the first axis and accounts for 
the greatest amount of the remaining variation 
among all the possible fines that could be drawn 
perpendicular to the first line. The third com- 

ponent must be perpendicular to both the first 

and second components and similarly accounts 
for the greatest amount of the remaining vari- 
ation (i.e. it is also chosen from among all the 

lines that are mutually perpendicular to the first 
and second components). The procedure can be 
carried on until all the variation is accounted for. 

Because each principal component is in fact a 
linear combination of the various chemical con- 
centrations, one can compute the principle com- 

ponent score of each sample. These scores can 
then be plotted against each other to determine 
if the samples came from one, or more than one, 

population. We have done this for our terpene 
data. In Fig. 1 we have plotted the first versus 
the second principal component for terpenes 

sampled in the Fall for the two parental taxa. 
The results clearly show that the terpene profile 

of basin big sagebrush differs from that of 
mountain big sagebrush. Hybrids form inter- 
mediate distributions when compared to the 

parentals. While a number of pretreatments of 
the data are possible and influence the data, for 
this analysis we did not pretreat the data. Princi- 

pal component analysis assumes linearity; if this 
assumption does not hold, there are non-linear 
ordinations that can be used, e.g. detrended 

principal components [20] or non-metric multi- 
dimensional scaling (211. 
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Fig. 1. Fall principal wmponent analysis. First versus second component. 

3.2. W~~~~~ ~~d~v~d~~~ v~ri~t~u~ AS a ~e~~r~ of have opted instead to use various eon-parametric 
deve~~p~entui cuntral, i.e. stress Euclidean distance measures. 

Chromatographic data may also be used to 
determine if organisms are under stress. The 
premise for this is rather simple. Organisms that 
are not stressed tightly regulate the development 
of their own bodies, while stress interferes with 
this regulation. By examining this within indi- 
vidual variation in concentration or proportions 
of compounds, one can assess the degree of 
stress organisms are under (22,241. 

Distance measures 

One can use either a parametric approach, i.e. 
analysis of variance, or a non-parametric ap- 
proach for this analysis. In our case, the 
parametric approach involves computing a within 
plant variance for the concentration or propor- 
tion of one or more c.ompounds, and determin- 
ing if the within plant variance differs among the 
taxa of sagebrush. Our full data set fails to meet 
the assumptions for the analysis of variance. We 

To compute the Euclidean distance, let A, be 
the concentration of one compound and B, be 
the concentration of a second compound taken 
from sample 1. Similarly, A, and B, are the 
concentrations found in sample 2 from the same 
individual (i.e. in our case multiple leaves on the 
same plant). Now, we simply plot the concen- 
trations in Euclidean space where compound A 
represents the x axis and compound B represents 
the y axis. The formula for the Euclidean dis- 
tance (ED) is given in Eq. 1. 

Each sample represents a point in this Eucli- 
dean space, and the distance between two points 
from the same individual represents a measure of 
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the dissimilarity, thus is an indicator of the 
degree of stress individuals are under 122-241. 
These distances can then be analyzed using 

either analysis of variance or Kruskal-Wallis 
tests. 

The results of our study show that mountain 

big sagebrush is less able to regulate the pro- 
duction of terpenes than either basin big sage- 
brush or the hybrids (Tables 5 and 6). The 
Euclidian distance described above will increase 

Table 5 

Measure of within-plant similarity using resemblance func- 

tions computed with data from the Spring 

Basin Hybrid Mountain 

Euclidean distance 

between leaves from 

the same branch 

Euclidean distance 

among leaves from 

different branches 

Chord distances 

between leaves from 

the same branch 

Chord distances 

among leaves from 

different branches 

Mean absolute 

distance between 

leaves from the same 

branch* 

Mean absolute 

distance among lcavcs 

from different 

branches* 
Jaccard index for 

leaves from the same 

branch 

Jaccard index for 

leaves from different 

branches 

Diversity index for 

leaves from the same 

branch 

Diversity index for 

leaves from different 

branches 

* Taxa differ signifi~ntly from one another at P 0.05. 

a.h Means subscripted by the same letter do not differ sip- 

nihcantly; means subscripted by different letters differ 

significantly at P < 0.05. 

Table 6 

Measure of within plant similarity using resembiance func- 
tions computed with data from the fall 

Basin Hybrid Mountain 

Euclidean distance 

between leaves from 

the same branch 

Euclidean distance 

among leaves from 

different branches 

Chord distances 

between leaves from 

the same branch 

Chord distances 

among leaves from 

different branches 

Mean absolute 

distance between 

leaves from the same 
branch* 

Mean absolute 

distance among leaves 

from different 

branches* 

Jaccard index for 

leaves from the same 

branch 

Jaccard index for 

leaves from different 

branches 

Diversity index for 

leaves from the same 

branch 

Diversity index for 

leaves from different 

branches 

0.11, 0.26, 0.41, 

0.07 0.20 0.29 

0.23, 0.36, 0.62, 

0.10 0.22 0.20 

1.21, 1.29, 1.30, 

0.13 0.08 0.09 

1.23, 1.31, 1.36, 

0.13 0.07 0.12 

0.24, 0.59, 0.91, 

0.15 0.43 0.64 

0.53, 

0.25 

0.79, 

0.13 

0.70, 

0.16 

1X5,,, 

0.40 

1.70, 

0.40 

0.84, 1.47, 

0.49 0.46 

0.68, 
0.13 

0.56, 

0.22 

0.53, 

0.22 

0.53, 

0.16 

2.06, 1.74, 

0.39 0.36 

2.02, 

0.37 

1.70, 

0*34 

Footnotes as in Table 5. 

as the number of compounds is increased. Lud- 
wig and Reynolds 1231 have reviewed a large 
number of resemblance functions and advocated 
dividing the total Euclidian distance by the 
number of compounds. They refer to this as the 

mean absolute Euclidean distance (MAD, Eq. 
2). 

MAD, = c IX,, - Xi, 1 IS 

In our case the taxa also differ signi~cantly for 
this distance measure as well (Tabies 5 and 6). 

Distance measures can also be used to com- 
pare the proportions of compounds among sam- 
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ples from the same individual. To do this one 
projects the data on to a unit circle. The length 
of the chord separating the data points (chord 

distance, CHD; Eq. 3) is the measure of dissimi- 
larity [23,25]. 

CHD,, = dm 

CCOSjk = c (XijXik) id_ 

Pa) 

(3b) 

Our data again showed that the mountain big 
sagebrush was less able to regulate the pro- 

portions of volatile and semivolatile compounds 
than the other two taxa (Table 5 or 6). 

Much can be learned by examining the pres- 

ence or absence of a compound. Jaccard’s index 
(JI, see [23]) is based upon such data and simply 
examines the percent of compounds that are 

common to all samples. We have computed the 
percent of compounds in common among two 
leaves from the same branch. 

JI = a&z + b + c) (4) 

where a = number of compounds made by both 
leaves, b = number of compounds made by leaf I 

that are not produced by leaf 2, c = number of 
compounds produced by leaf 2 that are not 
produced by leaf 1. 

Surprisingly, not all leaves make all the com- 
pounds the plant is capable of making. Once 
again, mountain big sagebrush was less able to 

regulate its physiology than either of the other 
taxa (Tables 5 and 6). 

Using the Shannon-Weaver information index 

(entropy H’, Eq. 5) we can also examine the 
information (entropy) content of a given sample. 
H’ increases as the number of compounds in- 

crease and as the concentrations of the com- 
pounds become more uniform. 

- H’ = - cpi In p, (5) 

where p is the frequency of the component 
measured. 

This information provides an idea of the 

complexity of the chemical environment that 
must be dealt with by both predators and 

pathogens. Our results show that the information 

content varied significantly among the groups. 

3.3. Sample size 

The sample size required varies with the test 

being used. In general the greater the number of 
samples taken, the greater the confidence in the 
mean. For parametric procedures one can use 
the procedure given in Ref. [23] where n = 

(.~‘t~(~).~_~ F P(I),(n_,,v))ld2, where s2 is the sam- 
ple variance from a pilot study, where tic,),,, _r 

refers to the tabulated value of a two-tailed t 
distribution with n - 1 degrees of freedom, 
F /3(l).(n-1.v) is the tabulated value of an F dis- 

tribution with n - 1 and v degrees of freedom, v 
is the degrees of freedom from the pilot study 
and d is the half width of the desired confidence 

interval. The TZ in the above equation is the 
desired sample size and the equation must be 
solved by iteration. In our work, we have found 

greater variability among plants than within 
plants. Thus, one needs’ to sample many more 

plants per treatment than leaves within a plant. 

We have found that 10 plants per treatment and 
four leaves per plant (total of 40 samples per 
treatment) is adequate to discriminate among the 

sagebrush taxa. 

4. Conclusions 

We have provided a conceptual approach and 

background for statistical interpretations of large 
amounts of digitally stored chromatographic data 
in a routine and efficient manner. Examples have 

been provided to demonstrate the transforma- 
tion of GC data into a format compatible for 
direct importation into statistics software pro- 

grams and guidance on the proper use of statisti- 
cal tools. We have demonstrated that the cou- 

pling of automated GC procedures and digital 
storage of data provide a viable method for the 
accumulation of large sets of data that can be 

subjected to statistical analysis. The approach 
used in this study is applicable to other chro- 
matographic analytical techniques which provide 

for the digital storage of retention data. 
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